
1

Gaining Insight into Parallel Program
Performance using HPCToolkit

John Mellor-Crummey
Department of Computer Science

Rice University

http://hpctoolkit.org

Argonne Training Program on Extreme-scale Computing August 5, 2013

Challenges for Computational Scientists
• Rapidly evolving platforms and applications

— architecture
– rapidly changing multicore microprocessor designs
– increasing architectural diversity

 CPU, GPU, APU, manycore (e.g., Xeon Phi)
– increasing scale of parallel systems

— applications
– augment computational capabilities

• Computational scientist needs
— adapt to changes in emerging architectures

– adding threading and/or offloading to accelerators
— improve scalability within and across nodes
— assess weaknesses in algorithms and their implementations

2

Performance tools can play an important role as a guide

3

Performance Analysis Challenges
• Complex node architectures are hard to use efficiently

— multi-level parallelism: multiple cores, ILP, SIMD, accelerators
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

• Complex applications present challenges
— measurement and analysis
— understanding behaviors and tuning performance

• Supercomputer platforms compound the complexity
— unique hardware & microkernel-based operating systems
— multifaceted performance concerns

– computation
– data movement
– communication
– I/O

4

What Users Want
• Easy-to-use multi-platform, programming model independent tools

• Accurate measurement of complex parallel codes
— large, multi-lingual programs
— (heterogeneous) parallelism within and across nodes
— optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

– dynamic binaries on clusters; static binaries on supercomputers
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code for actionable results
– support analysis at the desired level

 intuitive enough for application scientists and engineers
 detailed enough for library developers and compiler writers

• Scalable to petascale and beyond

5

Rice University’s HPCToolkit
• Employs binary-level measurement and analysis

— observe executions of optimized code
— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis
— natural approach that minimizes burden on developers

6

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

7

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

8

• For dynamically-linked executables, e.g., Linux
— compile and link as you usually do

• For statically-linked executables, e.g., Blue Gene/Q
— add monitoring by using hpclink as prefix to your link line

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun
 e.g., mpirun -np 8192 hpcrun -t -e WALLCLOCK@5000 flash3 ...

– statically-linked applications: control with environment variables
— collect statistical call path profiles of events of interest

9

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

10

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

11

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

12

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time

13

Analyzing Chombo@1024 cores with hpcviewer

14

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

15

Principal Views
• Calling context tree view - “top-down” (down the call chain)

— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs
— example: quantify initialization, solve, post-processing

• Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places
— example: see where PGAS put traffic is originating

• Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
— example: assess the overall memory hierarchy performance

within a critical procedure

16

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

17

The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

?

Note: higher is better

Ideal

Actual
scaling

18

Wanted: Scalability Analysis

• Isolate scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

19

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

20

Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Put your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism and/or different problem size
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

200K

400K600K

21

Pinpointing and Quantifying Scalability Bottlenecks

=−

Q P

Q ×

coefficients for analysis
of strong scaling

 P ×

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be

combined to create many different applications

22

Scalability Analysis Demo: FLASH3

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code: University of Chicago FLASH3
Simulation: white dwarf detonation
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

Scalability Analysis of Flash3 (Demo)

23

Improved Flash Scaling of AMR Setup

24Graph courtesy of Anshu Dubey, U Chicago

Scaling on Multicore Processors
• Compare performance

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

25

S3D: Multicore Losses at the Procedure Level

26

subroutine rhsf
accounts for 13.0% of
the multicore scaling
loss in the execution

Execution time
increases 1.65x in
subroutine rhsf

S3D: Multicore Losses at the Loop Level

27

Execution time
increases 2.8x in the
loop that scales worst

loop contributes 6.9%
of the scaling loss for
the whole execution

28

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

29

Understanding Temporal Behavior

Time

Processes

Call
stack

30

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

MPBS @ 960 cores, radix sort
Two views of load imbalance since not on a 2k cores

31

32

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

Blame Shifting
• Problem: in many circumstances sampling measures

symptoms of performance losses rather than causes
— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication
— idle GPU waiting for work

• Approach: shift blame for losses from victims to perpetrators
— blame code executing while other threads are idle
— blame code executed by lock holder when thread(s) are waiting
— blame processes that arrive late to collectives
— shift blame between CPU and GPU for hybrid code

33

Directed Blame Shifting

• Example:
— threads waiting at a lock are the symptom
— the cause is the lock holder

• Approach: blame lock waiting on lock holder

34

J
o
i
n

F
o
r
k

lockwait

acquire lock release lock

accumulate
samples in a global
hash table indexed
by the lock address

lock holder
accepts these

samples when it
releases the lock

Example: Directed Blame Shifting for Locks
 Blame a lock holder

 for delaying waiting
 threads

• Charge all samples
that threads receive
while awaiting a lock
to the lock itself

• When releasing
a lock, accept
blame at
the lock

35

all of
the
waiting
occurs
here
(symptom)

almost all blame
for the waiting is
attributed here
(cause)

work

Undirected Blame Shifting
• Example:

— threads idling waiting for work are the symptom
— the cause is insufficiently parallel work being executed by others

• Approach: each working threads proportionally blames itself for instantaneous
idling by others when it is sampled

36

counters hold the
number of threads
working and idle

working thread
charges itself a

share of idleness at
each sample

J
o
i
n

work

work

work

work

idle

F
o
r
k idle

idle

idle

Text

1
w

or
k

1/
5

id
le

ne
ss

1
w

or
k

3/
3

id
le

ne
ss

1
w

or
k

4/
2

id
le

ne
ss

1
w

or
k

1/
5

id
le

ne
ss

1
w

or
k

1/
5

id
le

ne
ss

1
w

or
k

1/
5

id
le

ne
ss

Performance Expectations for Hybrid Code with Blame Shifting

37

Milind Chabbi, Karthik Murthy, Michael Fagan, and John Mellor-Crummey.
Effective Performance Tools for CPU/GPU Systems. SC13. To appear.

GPU Successes with HPCToolkit
• LAMMPS: identified hardware problem with Keeneland system

— improperly seated GPUs were observed to have lower data copy
bandwidth

• LLNL’s LULESH: identified that dynamic memory allocation
using cudaMalloc and cudaFree accounted for 90% of the
idleness of the GPU

38

• Goal: associate memory hierarchy performance losses with data

• Approach
— intercept allocations to associate with their data ranges
— measure latency with various PMU capabilities

• instruction-based sampling (AMD Opteron)
• precise event-based sampling + load latency facility (Intel)
• marked instructions (IBM Power)

— present quantitative results using hpcviewer

39

Data Centric Analysis

Xu Liu and John Mellor-Crummey. A Data-centric
Profiler for Parallel Programs. SC13. To appear.

Data Centric Analysis of S3D

40

41.2% of memory hierarchy
latency related to yspecies
array

yspecies latency for this
loop is 14.5% of total
latency in program

41

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting
— attributing memory hierarchy costs to data

• Summary and challenges ahead

Summary
• Sampling provides low overhead measurement

• Call path profiling + binary analysis + blame shifting = insight
— scalability bottlenecks
— where insufficient parallelism lurks
— sources of lock contention
— load imbalance
— temporal dynamics
— bottlenecks in hybrid code
— problematic data structures
— hardware counters for detailed diagnosis

• Other capabilities
— attribute memory leaks back to their full calling context

42

HPCToolkit Status
• Operational today on

— 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
— IBM Blue Gene
— IBM Power7 systems running Linux

• Available as open source software at http://hpctoolkit.org

• Emerging capabilities
— NVIDIA GPU

• measurement and reporting using GPU hardware counters
— data centric analysis
— OpenMP analysis using OMPT

43

OMPT: Emerging Monitoring for OpenMP

44

main→fn.0→fn.1→fn.2

...

Problem: calling context
for parallel regions and
tasks is not readily
available to tools

Key OMPT Design Objectives
• Enable tools to gather information and associate costs with

application source and runtime system
— provide interface for low-overhead sampling-based tools
— enable tools to reconstruct application-level profiles

– alternative to implementation-level view
— associate activity of a thread at any point in time with a state

– enable performance tools to monitor behavior

• Negligible overhead if OMPT interface is not in use

• Define support for trace-based performance tools

45

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

46

source view

thread view

metric view

Tool Challenges Ahead
• Address challenges of emerging systems

— heterogeneity (e.g., on-chip; host + accelerator)
— growth in thread counts: MIC supports 200+ threads
— increasing scale of systems (e.g., Sequoia)

• Identify causes rather than symptoms (blame shifting)

• Measure and analyze all facets of application performance
— CPU, accelerator, data movement, synchronization, I/O, power
— interactions: HW, other jobs, system software

• Analyze asynchronous activities

• Support dynamic adaptation of software
— measurements and decision algorithms to drive adaptation
— assessment of adaptation policies

• Provide analysis to support higher level insight, diagnosis,
and guidance

47

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org

